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STABILIZED COMPOUNDS HAVING
SECONDARY STRUCTURE MOTIFS
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GOVERNMENT SUPPORT

This invention was made with government support under
GMS51330 awarded by the National Institutes of Health. The
government has certain rights in the invention.

BACKGROUND OF THE INVENTION

The important biological roles that peptides play as hor-
mones, enzyme inhibitors, substrates, neurotransmitters, and
neuromediators has led to the widespread use of peptides in
medicinal chemistry as therapeutic agents. Through binding
to receptors or enzymes, peptides are able to influence
cell-cell communication and control vital cell functions such
as metabolism, immune defense and reproduction. Babine et
al., Chem. Rev. 1997, 97, 1359). Unfortunately, the utility of
peptides as drugs is severely limited by several factors,
including their rapid degradation by peptidases under physi-
ological conditions, their poor cell permeability, and their
lack of binding specificity resulting from conformational
flexibility.

In response to these unfavorable characteristics of peptide
drugs, many research groups have developed strategies for
the design and synthesis of chemical compounds, known as
“peptidomimetics”, in which sensitive peptide moieties are
removed and replaced with more robust functionalities. In
particular, researchers have sought to improve peptide sta-
bility and cell permeability by replacing the amide function-
ality with groups such as hydroxyethylene, (E)-alkenes,
carba groups and phosphonamide groups (see, Gante, J.
Angew. Chem. Int. Ed. Engl. 1994, 33, 1699-1720, and
references cited therein).

Another approach that researchers have taken in the
development of peptide drugs is the study of, initiation of,
and retention of peptide secondary structures. These sec-
ondary structures, a-helices, f-sheets, turns, and loops, are
essential conformational components for peptides and pro-
teins because bioactive conformations are fixed to a high
degree by such structural elements. Because of the biologi-
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cal importance of these secondary structures, the develop-
ment of novel structures incorporating these secondary
structures has been a subject of intense research (see, for
example, R. M. J. Liskamp, Recl. Tray. Chim. Pays-Bas
1994, 113, 1; Giannis, T. Kolter, Angew. Chem. Int. Ed. Engl.
1993,32, 1244, P. D. Bailey, Peptide Chemistry, Wiley, New
York, 1990, p. 182). In particular, the formation of a-helices
by peptides has been of interest because many biologically
important protein interactions, such as p53/MDM2 and
Bcel-X1/Bak, are mediated by one protein donating a helix
into a cleft of its a-helix-accepting partner. Unfortunately, it
has been very difficult to mimic the approximately 12 amino
acids (i.e., three turns of an alpha helix) required to form a
stabilized isolated helical peptide. As described in “Bioor-
ganic Chemistry: Peptides and Proteins”, Chapter 12, Pep-
tide Mimetics, Nakanishi and Kahn, the entire contents of
which are incorporated herein by reference, most of the
effort in the design and synthesis of a-helix mimetics has
centered around N-termination initiation motifs. Further-
more, studies have been undertaken to understand the
mechanisms of a-helix formation by peptides, and thus
studies of helix-stabilizing side chain interactions, and tem-
plate-nucleated a-helix formation have been investigated
(see, J. Martin Scholtz and Robert L. Baldwin, “The Mecha-
nism of a-Helix Formation by Peptides, Ann. Rev. Biophys.
Biomol. Struct. 1992, 21, 95, the entire contents of which are
incorporated herein by reference) in an attempt to under-
stand-helix formation to aid in the future development of
stabilized o-helix structures.

Clearly, it would be desirable to develop novel methods to
generate stabilized-helical structures, as well as other sec-
ondary structures, to enable the investigation of complex
structure-function relationships in proteins and ultimately to
enable the development of novel therapeutics incorporating
specific stabilized secondary structure motifs.

SUMMARY OF THE INVENTION

The present invention provides novel compounds having
stabilized secondary structure motifs, and methods for their
preparation. In general, the synthesis of these stabilized
secondary structures involves (1) synthesizing a peptide
from a selected number of natural or non-natural amino
acids, wherein said peptide comprises at least two reactive
moieties capable of undergoing a carbon-carbon bond form-
ing reaction; and (2) contacting said peptide with a reagent
to generate at least one crosslinker and to effect stabilization
of a specific secondary structure motif. In one embodiment,
the present invention provides novel alpha helix structures
having stabilizing crosslinkers, libraries of these novel alpha
helix structures, and methods for the synthesis of these alpha
helices and libraries thereof. In certain embodiments, olefin
metathesis reactions are utilized to generate these novel
a-helical structures comprising (1) synthesizing a peptide
from a selected number of natural or non-natural amino
acids, wherein said peptide comprises at least two vinyl
amino acids capable of undergoing an olefin metathesis
reaction or comprises at least one divinyl amino acid and at
least two vinyl amino acids capable of undergoing olefin
metathesis reactions; and (2) contacting said peptide with a
metathesis catalyst to generate at least one crosslinker and to
effect stabilization of an alpha helix structure. In one pre-
ferred embodiment, at least two vinyl amino acids are
incorporated into the peptide synthesis to generate at least
one crosslinker. In another preferred embodiment, at least
two vinyl amino acids and at least one divinyl amino acid are
incorporated to generate at least two crosslinkers originating
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from the same amino acid. Alternatively, any combination of
divinyl amino acids and vinyl amino acids may be incorpo-
rated to generate desired crosslinked structures. It will also
be appreciated that in certain embodiments, one or more of
either of these crosslinker motifs can be incorporated into a
desired stabilized c-helix structure.

In another embodiment, the method of the present inven-
tion is utilized to provide stabilized p53 donor helical
peptides by incorporating vinyl amino acids into this struc-
tural motif and reacting said vinyl amino acids to generate
stabilized o-helical structures. Additionally, the present
invention provides methods for disrupting the p53/MDM2
binding interaction comprising (1) providing a crosslinker
stabilized a-helical structure; and (2) contacting said stabi-
lized a-helical structure with MDM2.

As will be appreciated by one of ordinary skill in the art,
in one embodiment, the novel compounds having stabilized
secondary structure motifs of the present invention can be
synthesized one-at-at time, using traditional peptide syn-
thetic techniques, to generate a particular structural motif. In
preferred embodiments, however, the these novel stabilized
secondary structures are synthesized using combinatorial
synthetic techniques, in solution or on the solid support, to
generate diverse libraries of novel stabilized compounds
having desired secondary structure motifs. Whether using
traditional synthetic techniques or combinatorial synthetic
techniques, the method of the present invention provides for
the generation of compounds having desired stabilized sec-
ondary structure motifs that can be based on existing struc-
tural motifs (p53) or that can represent novel unnatural
peptide secondary structure motifs to explore heretofore
unknown biological interactions.

DESCRIPTION OF THE DRAWING

FIG. 1 depicts a particularly preferred embodiment of the
invention in which a helix crosslinker is installed using
olefin metathesis.

FIG. 2 depicts the installation of a divinyl amino acid for
the stabilization of four turns (represented by SEQ ID
NO:4).

FIG. 3 depicts the synthesis of a-methyl a-alkylolefin
amino acids.

FIG. 4 depicts several different c-methyl a-alkylolefin
amino acids for use in the present invention.

FIG. 5 depicts the synthesis of an Fmoc protected divinyl
amino acid.

FIG. 6 depicts several different stabilized a-helix struc-
tures of the present invention (wherein D7L.n is represented
by SEQ ID NO:2, and L.4L.n, D4Dn, and D4Ln, are repre-
sented by SEQ ID NO:3).

FIG. 6A depicts experimental determination of exemplary
helix stabilizers.

FIG. 7 depicts variations in metathesis yields in a two
hour reaction.

FIG. 8 depicts a graph showing a summary of a-helicity
and metathesis percentages.

FIG. 9 depicts results showing that metathesized D71.11
is a monomer.

FIG. 10 depicts a fluorescence polarization binding study
of p53 peptides with MDM2.

FIG. 11 depicts the model peptide as a substrate for the
protease trypsin (represented by SEQ ID NO:2).

FIG. 12 depicts rates of Trypsin cleavage.

FIG. 13 depicts raw data for trypsin cleavage rate con-
stants.

FIG. 14 depicts D7L11 as an exemplary helix stabilizer.
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FIG. 15 depicts that stabilized helices may inactivate
overexpressed MDM2.

FIG. 16 depicts exemplary stabilized compounds for use
in the P53/Mdm2. P53-wt is represented by SEQ ID NO:10;
P53-1 is represented by SEQ ID NO:11; and P53-2 is
represented by SEQ 1D NO:12.

FIG. 17 depicts exemplary stabilized compounds for use
in the Bak/Bcl-xL system. Bak-wt is represented by SEQ ID
NO:5; Bak-1 is represented by SEQ ID NO:6; Bak-2 is
represented by SEQ ID NO:7; Bak-3 is represented by SEQ
ID NO:8; and Bak-4 is represented by SEQ ID NO:9.

FIG. 18 depicts the binding of Bak peptides to Bcl-x;.

FIG. 19 depicts a strategy for stabilizing a-helices
through an all-hydrocarbon crosslinking system. The key
components of the system are a-methylated amino acids 1,
bearing olefinic side-chains of varying length and configured
with either R or S stereochemistry. These are incorporated
into peptides at the i and either i+4 or i+7 position, and then
connected via olefin metathesis to crosslink one or two turns,
respectively, of the helix. The overall side-chain length of
1=n+2, and of the crosslinks=n+n+2. The nomenclature
R1,i+7S(11) refers to a peptide with an R and an S configu-
rated amino acid at positions “i”, and “i+7” respectively, and
11 carbons in the metathesized crosslink.

FIG. 20. (A) Different crosslinks destabilize and stabilize
the helix to different extents in the Ri,i+7S series. (B) In the
R1,i+78S series ai-methyl amino acids increase helical struc-
ture by ca. 15%. Inducing a crosslink using olefin metathesis
has an effect on helicity that depends on the crosslink length.
R1,i+7S(11) is the best helix stabilizer. The uncertainties in
these measurements are no greater than +/-5%.

FIG. 21 depicts data relating to the sedimentation equi-
librium of Ri,i+78(11). The graph depicts the experimentally
observed absorbance at 225 nm of Rii+7S(11) (open
circles), the calculated absorbance at 225 nm of a corre-
sponding idealized monomeric peptide (solid line), and the
calculated absorbance at 225 nm of a corresponding ideal-
ized dimeric peptide (dashed line); all data is presented as a
function of the radius of the sample. The experimental data
fits the calculated data for the idealized monomeric peptide.

DESCRIPTION OF CERTAIN PREFERRED
EMBODIMENTS

The present invention provides stabilized compounds
having specific secondary structure motifs and improved
methods for generating stabilized compounds having these
specific secondary structure motifs. The novel stabilized
compounds of the present invention are useful where such
structural motifs are advantageous; for example, in drug
design and delivery, and in but a few examples, as inhibitors
of pS3/MDM2 and Bak/Bcl-x; interactions.

In general, the synthesis of these stabilized secondary
structures involves (1) synthesizing a peptide from a
selected number of natural or non-natural amino acids,
wherein said peptide comprises at least two reactive moi-
eties capable of undergoing a C—C bond forming reaction;
and (2) contacting said peptide with a reagent to generate at
least one crosslinker and to effect stabilization of a specific
secondary structure motif. In one embodiment, the present
invention provides novel alpha helix structures having sta-
bilizing crosslinkers, libraries of these novel alpha helix
structures, and methods for the synthesis of these alpha
helices and libraries thereof. In certain embodiments, olefin
metathesis reactions are utilized to generate these novel
a-helical structures comprising (1) synthesizing a peptide
from a selected number of natural or non-natural amino
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acids, wherein said peptide comprises at least two vinyl
amino acids capable of undergoing an olefin metathesis
reaction or comprises at least one divinyl amino acid and at
least two vinyl amino acids capable of undergoing olefin
metathesis reactions; and (2) contacting said peptide with a
metathesis catalyst to generate at least one crosslinker and to
effect stabilization of an alpha helix structure. In one pre-
ferred embodiment, at least two vinyl amino acids are
incorporated into the peptide synthesis to generate at least
one crosslinker. In another preferred embodiment, at least
two vinyl amino acids and at least one divinyl amino acid are
incorporated to generate at least two crosslinkers originating
from the same amino acid. Alternatively, any combination of
divinyl amino acids and vinyl amino acids may be incorpo-
rated to generate desired crosslinked structures. It will also
be appreciated that in certain embodiments, one or more of
either of these crosslinker motifs can be incorporated into a
desired stabilized c-helix structure.

In another embodiment, the method of the present inven-
tion is utilized to provide stabilized p53 donor helical
peptides by incorporating vinyl amino acids into this struc-
tural motif and reacting said vinyl amino acids to generate
stabilized o-helical structures. Additionally, the present
invention provides methods for disrupting the p53/MDM2
binding interaction comprising (1) providing a crosslinker
stabilized a-helical structure; and (2) contacting said stabi-
lized a-helical structure with MDM2.

As will be appreciated by one of ordinary skill in the art,
in one embodiment, the novel compounds having stabilized
secondary structure motifs of the present invention can be
synthesized one-at-at time, using traditional peptide syn-
thetic techniques, to generate a particular structural motif. In
preferred embodiments, however, the these novel stabilized
secondary structures are synthesized using combinatorial
synthetic techniques, in solution or on the solid support, to
generate diverse libraries of novel stabilized compounds
having desired secondary structure motifs. Whether using
traditional synthetic techniques or combinatorial synthetic
techniques, the method of the present invention provides for
the generation of compounds having desired stabilized sec-
ondary structure motifs that can be based on existing struc-
tural motifs or that can represent novel unnatural peptide
secondary structure motifs to explore heretofore unknown
biological interactions.

Certain preferred embodiments of the novel compound
having stabilized secondary structures will be described
below; however, this description is not meant to limit the
scope of the present invention. Rather, it will be appreciated
that all equivalents are intended to be included within the
scope of the present invention.

Synthesis of Novel Compounds Having Stabilized Sec-
ondary Structure Motifs

As discussed above, the present invention provides novel
stabilized compounds having specific secondary structure
motifs, libraries thereof, and methods for the preparation of
these compounds and libraries thereof. In certain preferred
embodiments, the present invention also provides novel
a-helix structures, libraries thereof, and methods for the
preparation of these a-helices and libraries thereof.
Although the following discussion and description of the
method of the present invention focuses on alpha helices, it
will be appreciated that the methods of the present invention
can be applied to generate other peptide secondary structures
as well.

The synthesis of novel a-helix structures first involves the
selection of a desired number of amino acid starting mate-
rials. As one of ordinary skill in the art will realize, the
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number, stereochemistry, and type of amino acid structures
(natural or non-natural) selected will depend upon the size of
the a-helix to be prepared, the ability of the particular amino
acids to generate the ca-helix structural motif, and any
particular motifs that are desirable to mimic (for example,
the p53 donor helical peptide). Furthermore, as mentioned
above, for the synthesis of the stabilized alpha helixes, in
one preferred embodiment, at least two of the desired amino
acids to be utilized in the synthesis are vinyl amino acids
capable of undergoing ring closing metathesis reactions to
generate at least one stabilizing crosslinker, as shown in
FIG. 1. In another preferred embodiment, the peptide to be
synthesized incorporates at least two vinyl amino acids and
one divinyl amino acid to generate at least two stabilizing
crosslinkers originating from the same amino acid moiety, as
shown in FIG. 2. It will be appreciated, however, that the
number of crosslinking moieties is not limited to one or two,
as described above, respectively; rather the number of
crosslinking moieties utilized can be varied with the length
of the alpha helix as desired, and as compatible with the
desired structure to be generated.

In particularly preferred embodiments, a-methyl, c.-vinyl
amino acids are utilized in the present invention as precur-
sors for crosslinker formation. FIG. 3 depicts a general
scheme of the synthesis of a-methyl, a-alkylolefin amino
acids. As shown in FIG. 3, commercially available lactone
(1) is treated with methyl iodide and sodium tetramethyl
disilylazide

to generate the methylated lactone (2). Subsequent treat-
ment with a homoallyl iodide in the presence of potassium
tetramethyl disilylazide yields the homoallyloxazinone (3).
Sodium metal reduction, acid hydrolysis, and protection
with Fmoc-NHS generates the protected o-methyl,
a-alkylolefin (4) for use in the synthesis of the novel alpha
helix structures. As one of ordinary skill in the art will
realize, a variety of homoallyl reagents can be utilized to
generate amino acids having different lengths of olefin
chains. It will also be appreciated that these olefin chains can
also be further functionalized with moieties including, but
not limited to, branched or linear alkyl moieties, hydroxyl
moieties, thiol moieties, amines, carboxyl moieties and
substituted or unsubstituted aryl moieties, to name a few.
FIG. 4 also depicts certain preferred a-methyl, ai-alkylolefin
amino acids for use in the present invention having different
olefin chain lengths.

As discussed above, the novel a-helices of the present
invention may also contain two crosslinking units originat-
ing from one amino acid. This is facilitated by the synthesis
of a divinyl amino acid, from which two olefin metathesis
reactions can originate, and is preferably incorporated into
the desired peptide synthesis. FIG. 5 depicts the synthesis of
an Fmoc protected divinyl amino acid. As shown in FIG. 5,
reaction of diphenyliminoglycine (1) sequentially with two
equivalents of phenylvinylsulfoxide (2) generates a bis
phenylsulfoxide (3), which, upon treatment with xylenes
under reflux conditions, eliminates to yield the divinyl
moiety (4). Subsequent saponification, acid hydrolysis and
deprotection yields the unprotected divinyl glycine moiety
(5). Finally, protection with Fmoc-NHS at room temperature
yields the protected divinyl glycine moiety (6) for use in the
synthesis of the novel a-helix structures of the present
invention.

Although vinyl amino acids and divinyl amino acids are
preferably utilized to generate the preferred crosslinking
moieties as discussed above using ring closing metathesis
reactions, the other amino acids utilized in the peptide
synthesis may be selected from any standard or nonstandard



US 10,487,110 B2

7

amino acids. The standard amino acids include Glycine,
Alanine, Valine, Leucine, Isoleucine, Proline, Phenylala-
nine, Tryptophan, Methionine, Serine, Threonine, Cysteine,
Tyrosine, Asparagine, Glutamine, Aspartic acid, Glutamic
acid, Lysine, Arginine and Histidine. There are over 700
known nonstandard amino acids any of which may be
included in the peptide precursors for use in the present
invention. See, for example, S. Hunt, The Non-Protein
Amino Acids: In Chemistry and Biochemistry of the Amino
Acids, edited by G. C. Barrett, Chapman and hall, 1985.
Some examples of non-standard amino acids are [-alanine,
D-alanine, 4-hydroxyproline, desmosine, D-glutamic acid,
a-aminobutyric acid, f-cyanoalanine, norvaline, 4-(E)-bute-
nyl-4(R)-methyl-N-methyl-[-threonine, = N-methyl-L-leu-
cine, and statine. Additionally, the amino acids suitable for
use in the present invention may be derivatized to include
amino acid residues that are hydroxylated, phosphorylated,
sulfonated, and glycosylated, to name a few. Additionally,
these amino acids may include functional groups including,
but not limited to alcohol, thiol, ketone, aldehyde, ester,
ether, amine, imine, amide, nitro acid, carboxylic acid,
disulfide, carbonate, carboalkoxy acid, isocyanate, carbodi-
imide, carboalkoxy and halogen functional groups. It will be
appreciated by one of ordinary skill in the art, however, that
certain amino acids are capable of promoting formation of
alpha helix structures or other desired secondary structures,
and thus these specific amino acids are particularly preferred
for use in the present invention, depending on the desired
secondary structure to be generated. For a detailed discus-
sion of helix propensities studied in various substitution
experiments, see Scholtz and Baldwin, the entire contents of
which are incorporated herein by reference. Furthermore, as
discussed above, it may be desirable to mimic an existing
peptide o-helical structure, or other secondary structure,
having the crosslinking moiety incorporated therein accord-
ing to the method of the present invention.

Once the desired amino acids are selected for the synthe-
sis of a desired peptide according to the present invention,
synthesis of the desired peptide can be achieved using
standard deprotection and coupling reactions. One example
of a preferred solution phase peptide synthesis coupling
protocol includes the use of N,N-dicyclohexylcarbodiimide
(DCC)/1-hydroxybenzotriazole (HOBT) as a peptide cou-
pling agent (see, M. Bordansky, Petpide Chemistry, Springer
Verlag, N.Y., 1988, pp. 55-146 the entire contents of which
are incorporated herein by reference). Other peptide synthe-
sis techniques have been extensively discussed in “Bioor-
ganic Chemistry” as cited herein. One of ordinary skill in the
art will realize that the choice of a particular synthetic
technique will depend upon the particular structures to be
synthesized.

After a desired peptide is synthesized using an appropriate
technique, the peptide is contacted with a specific reagent to
promote carbon-carbon bond formation. In one particular
embodiment, a metathesis catalyst is utilized to effect one or
more olefin metathesis reactions and subsequent generation
of a crosslinker and stabilization of the alpha helix or other
desired secondary structure. One of ordinary skill in the art
will realize that a variety of metathesis catalysts can be
utilized in the present invention. Selection of a particular
catalyst will vary with the reaction conditions utilized and
the functional groups present in the particular peptide.
Exemplary catalysts include, but are not limited to stabi-
lized, late transition metal carbene complex catalysts such as
Group VIII transition metal carbene catalysts, most prefer-
ably Ru and Os metal centers having a +2 oxidation state, an
electron count of 16 and pentacoordinated. One of ordinary
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skill in the art will realize that other appropriate olefin
metathesis catalysts may be utilized. For an excellent dis-
cussion of metathesis reactions, see, Grubbs et al., “Ring
Closing Metathesis and Related Processes in Organic Syn-
thesis” Acc. Chem. Res. 1995, 28, 446-452, and U.S. Pat.
No. 5,811,515.

It will also be appreciated, that in addition to olefin
metathesis catalysts, other reagents capable of promoting
carbon-carbon bond formation can also be utilized. For
example, other reactions that can be utilized, include, but are
not limited to palladium coupling reactions, transition metal
catalyzed cross coupling reactions, pinacol couplings (ter-
minal aldehydes), hydrozirconation (terminal alkynes),
nucleophilic addition reactions, and NHK (Nozaki-Hiyama-
Kishi (Fiirstner et al., J. Am. Chem. Soc. 1996, 118, 12349))
coupling reactions. Thus, the appropriate reactive moieties
(alkene, alkyne, aldehyde etc.) are first incorporated into
desired amino acids or unnatural amino acids (see vinyl
amino acid synthesis for one example), and then the peptide
is subjected to reaction conditions to effect carbon-carbon
bond formation which results in the formation of a cross-
linker and subsequent stabilization of a desired secondary
structure.

In a particularly preferred embodiment of the present
invention, the method of the present invention was utilized
to engineer stabilized alpha helical peptides that are capable
of binding tightly to a helix acceptor and disrupting native
protein/protein interactions. Towards this end, two alpha-
methyl, alpha-alkyl terminal olefin unnatural amino acids,
were incorporated into the peptide fragment that forms the
donor helix in the native complex (p53) and cross-linking
the amino acids using a ruthenium metathesis catalyst to
form a bridge that stabilizes the peptide in an alpha helical
conformation. Using this approach, 14 different model pep-
tides (as shown in FIG. 6), incorporating different stereo-
chemistry, vinyl amino acid placements and carbon chain
lengths, were synthesized to explore the different ways of
stabilizing the helix. Each of these were characterized by
circular dichroism spectroscopy to determine the stabiliza-
tion in an alpha helical conformation. FIG. 6A also depicts
the experimental determination of the best helix stabilizer.
FIG. 7 depicts the variation in the metathesis yields in a two
hour reaction. As shown in FIG. 8, the % helicity is
compared for metathesized and unmetathesized peptides and
D7L11 provides the optimal helicity. Thus, it is particularly
preferred to generate a structure having a cross link from
residue (i) to residue (i+7) with (S) stereochemistry at the
alpha carbon of residue (i) and (R) stereochemistry at
position (i+7). It is also particularly preferred that the
number of carbons in the crosslinker is eleven. As shown in
FIG. 8, helix stabilizing cross-linker caused the model
peptide to exhibit almost 90% helicity in water. FIG. 9
additionally shows that metathesized D711 is a monomer.

As an example of the utility of these novel stabilized alpha
helix structures, this preferred alpha helix structure was
implemented in the p53/MDM2 system by synthesizing two
stabilized p53 donor helical peptides and determining their
binding to the Xenopus MDM2 protein. The unnatural
amino acids are incorporated into the p53 donor fragment on
the side of the helix that does not interact with MDM?2 so as
not to disrupt the evolved p53/MDM2 binding interface.
Preliminary fluorescence polarization results, as depicted in
FIG. 10, show that both stabilized p53 peptides begin to bind
MDM2 at 100 fold lower MDM2 concentration, and thus
100 fold tighter, than the native p53 donor fragment.

Additionally, FIG. 11 shows that the model peptide is a
substrate for the protease trypsin. As depicted in FIGS. 12,
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13, and 14, an inventive stabilized compound D71.11 shows
the slowest rate of trypsin cleavage, and thus is an exem-
plary helix stabilizer.

Combinatorial Synthesis of Novel Stabilized Structures

It will also be appreciated by one of ordinary skill in the
art that the method described above can also be applied to
combinatorial synthesis of the novel stabilized structures
having desired secondary structures. Although combinato-
rial synthesis techniques can be applied in solution, it is
particularly preferred that combinatorial techniques are per-
formed on the solid phase using split-and-pool techniques.
In general, in a preferred method of the present invention,
Solid Phase Peptide Synthesis (SPPS) techniques are uti-
lized. Similarly to solution phase techniques, in solid phase
techniques, the choice of the protecting groups must be
considered, as well as the specific coupling techniques to be
utilized. For a detailed discussion of peptide synthesis
techniques for solution phase and solid phase reactions, see,
Hecht, ed. “Bioorganic chemistry: Peptides and Proteins,
Oxford University Press, New York: 1998, the entire con-
tents of which are incorporated herein by reference.

The present invention, in one aspect, provides methods
for the synthesis of libraries of novel stabilized compounds
having secondary structure motifs comprising (1) providing
a collection of resin-bound amino acids; (2) deprotecting
each of said resin bound amino acids; (3) separating said
collection of deprotected resin bound amino acids into n
equal portions, wherein n represents the number of different
types of amino acids to be coupled; (4) coupling of each of
n types of amino acids to the deprotected amino acid; (5)
combining each of the n portions together; (6) repeating
steps (2)-(5) until a desired peptide is obtained, wherein at
least two of the amino acids coupled at any step comprise
substituted or unsubstituted vinyl amino acids capable of
undergoing ring closing metathesis reaction, or wherein at
least one amino acid coupled at any step comprises a
substituted or unsubstituted divinyl amino acid and at least
two of the amino acids incorporated at any step comprise
substituted or unsubstituted vinyl amino acids, whereby said
divinyl amino acid and said vinyl amino acid are capable of
undergoing ring closing metathesis reactions to generate two
cross-linkers originating from the same amino acid; and (7)
contacting said peptide with a ring closing metathesis cata-
lyst to generate a library of cross-linked stabilized a-helix
peptide structures. During the course of the combinatorial
synthesis, various parameters can be varied, including, but
not limited to vinyl and divinyl amino acid placement,
stereochemistry of amino acids, vinyl and divinyl chain
length and functionality and amino acid residues utilized.
Furthermore, as discussed above, other reactive moieties
(such as aldehydes or alkynes, to name a few) can be utilized
instead of alkene moieties and thus other carbon-carbon
bond forming reactions can be utilized to form stabilized
compounds having secondary structure motifs and are
within the scope of the present invention.

It will be appreciated by one of ordinary skill in the art
that the libraries of compounds having stabilized secondary
structures can be further diversified at specific functional
moieties after the desired stabilized structures are formed.
For example, free or latent amino acid functionalities may be
diversified, or alternatively or additionally, free or latent
functionality present on the cross-linkers may be diversified.
In particularly preferred embodiments, in but one example,
the hydrophobicity of stabilized structures may be increased
by the introduction of hydroxyl moieties. As one of ordinary
skill in the art will realize, the diversification reactions will
be selected to introduce functionalities compatible with the
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particular stabilized structures and the desired biological
interactions, and these functionalities include, but are not
limited to hydrogen, alkyl, aryl, phenoxy, methoxy, halide,
benzene, heteroaryl, carboxyl, carboxalkyl, carboxaryl, ary-
lalkyl, thio and hydroxyl.

Uses of the Novel Stabilized Structures of the Present
Invention

The novel stabilized structures, libraries, and methods for
making said novel stabilized structures of the present inven-
tion can be utilized in various disciplines. Any available
method may be employed to screen the libraries produced
according to the present invention to identify those with
desirable characteristics for a selected application.

To give just a few examples, the present invention can be
used to produce novel stabilized structures that control (i.e.,
promote or inhibit) cell functions. Such compounds may be
formulated and utilized as therapeutic pharmaceuticals. For
example, such therapeutic pharmaceuticals, through inter-
actions with cellular receptors, can control cell proliferation,
viral replication, gene expression, or any other cell signaling
process.

More specifically, as mentioned above, many biologically
important protein/protein interactions, such as p53/MDM2
(see FIGS. 15 and 16) and Bcl-X1/Bak (see FIGS. 17 and
18) are mediated by one protein donating a helix into a cleft
of its helix-accepting partner. The interaction of p53 and
MDM2 has been discussed in detail (see, Shair “A Closer
View of an Oncoprotein-tumor Suppressor Interaction,
Chem. & Biol. 1997, 4, 791, the entire contents of which are
incorporated herein by reference) and mutations in the p53
gene have been identified in virtually half of all reported
cancer cases. As stresses are imposed on a cell, p53 is
believed to orchestrate a response that leads to either cell-
cycle arrest and DNA repair, or programmed cell death. As
well as mutations in the p53 gene that alter the function of
the p53 protein directly, p53 can be altered by changes in
MDM2. The MDM?2 protein has been shown to bind to p53
and disrupt transcriptional activation by associating with the
transactivation domain of p53. For example, an 11 amino-
acid peptide derived from the transactivation domain of p53
forms an amphipathic a-helix of 2.5 turns that inserts into
the MDM2 crevice. Thus, novel alpha helix structures
generated by the method of the present invention can be
engineered to generate structures that may bind tightly to the
helix acceptor and disrupt native protein-protein interac-
tions. These structures may then be screened using high
throughput techniques to identify optimal small molecule
peptides. The novel structures that disrupt the MDM?2 inter-
action might be useful for many applications, including, but
not limited to, control of soft tissue sarcomas (which over-
expresses MDM2 in the presence of wild type p53). These
cancers may be held in check with small molecules that
could intercept MDM?2, thereby preventing suppression of
p53. Additionally, small molecules disrupters of MDM2-p53
interactions could be used as adjuvant therapy to help
control and modulate the extent of the p53 dependent
apoptosis response in conventional chemotherapy. FIG. 15
shows that stabilized helices may inactivate overexpressed
MDM2 and FIG. 16 depicts novel stabilized structures to be
utilized for the P53/Mdm?2 system. Similarly, FIG. 17
depicts novel stabilized structures utilized for the Bak/Bcl-
x; system and FIG. 18 depicts the binding of Bak peptides
to Bel-x;.

In addition to the abovementioned uses, the inventive
stabilized structures can be used for studies in bioinorganic
chemistry or in catalysis, either as a ligand for a transition
metal capable of mimicking an important biological envi-
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ronment, or by acting in concert with a particular transition
metal catalyst to effect a desired chemical reaction.

Furthermore, the inventive stabilized structures are also
useful in the area of materials science. For example, mol-
ecules such as lipids and other polymeric molecules may be
attached to the terminal peptide moieties and thus generate
potentially important biomaterials.

It will be appreciated by one of ordinary skill in the art
that the present invention is not intended to be limited to the
abovementioned uses, but rather may be employed in many
suitable contexts and disciplines.

Peptides are excellent protein ligands, both for their tight
binding and for the ease by which can be discovered using
diversity based techniques. On the other hand, peptides are
poor therapeutics because of their low membrane perme-
ability and susceptibility to protease cleavage. To enhance
the bioavailability of short a-helical peptides, we have
developed a chemical system wherein all-hydrocarbon cova-
lent crosslinks are installed across one and two turns of an
a-helix using olefin metathesis chemistry. By screening
crosslinker position, stereochemistry and crosslinker length,
we have determined the optimal crosslinking geometry for
maximum metathesis yield and maximum helix-stabilization
in a model system. The installation of this optimal crosslink
system enhances the helix content of a model peptide from
41% to 85%, which is comparable to the best helix enhance-
ment seen in other systems. Installation of this crosslink
system also enhances resistance to trypsin cleavage by over
40-fold when compared to the unmodified control peptide.

Peptides that bind macromolecular receptors in an
extended conformation can often be converted to mimetics
that retain binding but have improved protease resistance
and membrane permeability'. However, peptides that must
fold upon themselves in order to bind a receptor have proven
difficult to improve by similar approaches, because of their
larger size and the difficulty of mimicking functionality
presented on a complex folded molecular surface. One such
folded peptide structure that participates widely in biomo-
lecular recognition events is the a-helix*>. Most peptides
that bind their receptors in an a-helical conformation have
little helical structure when free in solution. Stabilizing the
helical form of such peptides is thus expected to favor
receptor binding by virtue of preorganization. Furthermore,
the intramolecular hydrogen bonding associated with helix
formation reduces the exposure of the polar amide back-
bone, thereby reducing the barrier to membrane penetration
and increasing the resistance to protease cleavage.

A number of approaches for covalent helix-stabilization
have been reported®, but most involve crosslinks that are
both polar and pharmacologically labile, such as disulfides’
and lactam bridges®”. An important conceptual advance on
this front is the development by Grubbs and co-workers of
chemistry for olefinic crosslinking of helices through 0-allyl
serine residues located on adjacent helical turns, via ruthe-
nium-catalyzed ring closing metathesis (RCM)®. The par-
ticular crosslinks analyzed in that study, however, showed
no evidence of enhancing helical stability, highlighting the
difficulty of this problem from a design standpoint. Here we
have taken an alternate metathesis-based approach, namely
to screen multiple configurations of all-hydrocarbon cross-
links differing in position of attachment, stereochemistry,
and crosslinker length. Where some configurations impart
significant helix-stabilization, others actually destabilize the
helix. We show that stabilizing an a-helix in this way leads
to markedly increased resistance to proteolysis.

The actual structure of crosslinks positioned on one face
of'an a-helix is very dependent upon the stereochemistry at
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the attachment points (FIG. 19). We therefore designed
unnatural amino acids 1 having either R or S stereochem-
istry at the a-carbon, and bearing alkyl tethers of various
lengths (FIG. 19). To avoid the intrinsic helix-destabilizing
effect of D-configured amino acids while capitalizing on the
helix-stabilizing effect of a,a-disubstituted amino acids we
introduced an a-methyl group into 1. We incorporated these
synthetic amino acids across either one or two turns (i and
i+4, or i+7 position, respectively; FIG. 19) of the C-peptide
sequence from Rnase A®; this particular peptide was chosen
because it exhibits partial helicity in water, allowing us to
observe both increases and decreases in helical content
owing to modifications'® .

None of the peptides in the R, ,S(x) series (x=5, 6, 7)
underwent metathesis to any measurable extent. In the
R,,.4R(x) series, the peptide having a 6-carbon crosslink
(x=6) failed to metathesize, but that having a 7-carbon
crosslink (x=7) formed to the extent of 17%, and the
metathesis reaction leading to the 8-carbon crosslinked
peptide (x=8) went to completion (>98%) (Table 1). In the
S, +45(x) series, the shortest member (x=6) again failed to
undergo RCM, but the longer versions, x=7 and 8, under-
went 68% and >98% conversion, respectively. In the
R,,,7S(x) series the crosslinks were again formed with
increasing efficiently as they became longer (x=8, <5%; x=9,
51%; 10, 77%; 11, >98%; 12, >98%). Two general trends are
evident from these reactions. First, the conversions by RCM
increase as a function of increasing ring size in the macro-
cyclic crosslink. Indeed, the 34-membered macrocycle in
S, +7R(12) is formed rapidly and efficiently, despite being
one of the largest macrocycles closed by RCM to date''.
Second, small changes in ring size can cause dramatic
effects on the efficiency of crosslinking; for example, the
30-membered macrocycle in R, ,,,S(8) fails to form appre-
ciably, whereas the 31-membered ring of R, ,, ,S(9) forms to
the extent of 50%. We believe both effects can be explained
by templating of the RCM reaction through helix induction
of the unmetathesized precursor peptides on the solid sup-
port in the solvent dichloroethane. According to this expla-
nation, tethers that are too short to span the gap along the
face of the templating helix are not metathesized efficiently.

To determine the effect of olefinic crosslinking on the
helical propensity of the peptides, we used circular dichro-
ism to provide a quantitative measure of helical content'?
(FIG. 20). As a benchmark, the control unmodified RNase A
peptide is ~40% a.-helical in water containing 0.1% trifluo-
roacetic acid at 4° C. All peptides that underwent RCM to
the extent of ~50% or more were measured in both uncross-
linked and crosslinked forms. In most cases, and as
expected’, inclusion of the two ca-disubstituted amino
acids into the peptide increased its helical content with
respect to the unmodified control. In the i,i+4 peptide series,
crosslinking neither stabilized nor destabilized the helix with
respect to the corresponding uncrosslinked modified pep-
tide; the reasons for this effect are not apparent from
inspection of models. RCM crosslinking of the modified
1,i+7 peptides produced effects ranging from 21% destabi-
lization to significant stabilization of a-helical structure.
Specifically, the helical content of the R,,,,S(9) and (10)
peptides decreased by 21% and 12% following RCM,
whereas that of the R, ,S(11) peptide increased by 26%.
Crosslinking of the R,,,,S(12) peptide produced cis and
trans double bond isomers one of which was more stabiliz-
ing than the other (18% vs 7%)**. The overall trends seen in
the R, ,, ;S series can be rationalized as follows: crosslinks of
9 and 10 carbons are too short to permit the formation of an
unstrained helix, 11 carbons provides the optimal fit, and 12
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carbons are longer than necessary and therefore do not
constrain the helix as effectively as the 11 carbon crosslink.
Importantly, the introduction and crosslinking of two modi-
fied amino acids as an 11 atom hydrocarbon chain stabilizes
the helix by 44% when compared to an unmodified control
peptide, an extent that is comparable to the best seen with
other crosslinking systems®. As determined by sedimenta-
tion equilibrium, all of the peptides were monomeric under
the conditions of the circular dichroism experiments, indi-
cating that the helix induction is not due to aggregation'®.

To assess the effect of the olefin in the crosslink on
helix-stability, we reduced the double bonds in the R, ,,,S
series by transfer hydrogenation on the solid phase'®'”,
purified the saturated, crosslinked peptides and determined
their helical content by CD. Remarkably, the helical prop-
erties of the entire hydrogenated R, ,, ,S(9-12) peptide series
was indistinguishable from that of the corresponding olefin
containing peptides.

Cleavage by proteases is one of the main pathways for
inactivation of peptides in a biological setting. As all known
proteases bind their substrates in an extended rather than
helical conformation, inducing helical structure is expected
to confer protease stability, leading to increased potency in
vivo. As an in vitro test of this concept, we took advantage
of the fact that the crosslinked stretch of our peptides
contains a lysine residue, which can be targeted by the
protease trypsin. As expected, the unmodified control pep-
tide is highly susceptible to cleavage by trypsin (k=2.38
M~ s71) (Table 2). Incorporation of the two unnatural amino
acids at the i and i+7 positions, without crosslinking,
decreases the cleavage rate by almost 5 fold, consistent with
the helix-stabilizing effects noted above. Metathesis and
subsequent hydrogenation produced a further stabilization,
the magnitude of which is markedly dependent on the length
of the crosslink. The extent of this crosslink-dependent
stabilization precisely mirrored the extent of helix induction,
being most pronounced for the R, ,,,S(11) peptide. Overall,
the incorporation of the crosslink unit stabilizes this peptide
toward trypsin digestion by 41 fold.

The major goal of this research program is to improve the
pharmacological properties of c-helical peptides through
synthetic modification. The present report is an important
first step toward that end. Here we show that an all-
hydrocarbon crosslinking system can greatly increase the
helical propensity and metabolic stability of peptides.
Experimental Procedures

General: "H (400 MHz) and "*C (100 MHz) NMR spectra
were measured in DMSO-d, using tetramethylsilane as the
standard for 'H NMR and the solvent resonance (39.5 ppm)
for 1*C NMR. Mass spectral data were obtained at the
Harvard Mass Spectrometry Facility.

Synthesis of Boc protected a-methyl, a-alkenyl amino
acids: The synthesis is as described by Williams® for Boc
protected a-methyl, a-allyl amino acid with the following
modifications. The second alkylation with allyl-iodide as the
electrophile was performed at -78° C. The second alky-
lation, with 4-iodo-1-butene, 5-iodo-1-pentene, 6-iodo-1-
hexene, or 8-iodo-1-hexene as the electrophile was per-
formed at -40° C. (MeCN/N, (liquid)) with 3 equivalents of
the electrophile and the reaction was stirred for 30 min after
the dropwise addition of potassium bis(trimethylsilyl)amide.
The second alkylation, when it involved the electrophile
4-iodo-1-butene resulted in lower yields (45%) presumably
due to competing elimination of the 4-iodo-1-butene to
1,3-butadiene. Deblocking of the a,c disubstituted amino
acids was performed using the sodium in liquid ammonia
hydrogenolysis described as described by Williams®.
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Deprotection of the Boc protected a-methyl, a-alkenyl
amino acids and acetylation with 9-fluorenylmethyl carbam-
ate: The Boc protected a-methyl, a-alkenyl amino acid was
dissolved in CH,CI, (to yield a concentration of 500 mM)
and cooled to 0° C. To this solution, an equal volume of
trifluoroacetic acid was added and the solution is allowed to
stir for 30 min. The product was concentrated on a rotovap
fitted with a dry ice/acetone cold finger to trap TFA. The
residue is dried on high vacuum until it contained less than
2 equivalents of residual TFA by weight. To this residue was
added a 50% water/acetone solution to 300 mM final con-
centration of amino acid, 3 equivalents of Na,CO; and 1.05
equivalents of Fmoc-N-hydroxy-succinimide. The nonho-
mogenous mixture was stirred for 12 hours at room tem-
perature. The mixture was then acidified to pH 3 using
hydrochloric acid and extracted three times with ethyl
acetate. The combined ethyl acetate extracts were then dried
over anhydrous sodium sulfate, concentrated, and purified
using flash chromatography using MeOH:CH,Cl,:AcOH
(3:96:1).

(S)-N-(9-Fluorenylmethyl carbamate)-2-(2'-propenyl)ala-
nine (“Fmoc-8-1,). 'H-NMR (400 MHz, DMSO-d,) 8 7.90
(d, J=7.6 Hz, 2H), 7.73 (d, J=7.2 Hz, 2H), 7.42 (t, J=7.2 Hz,
2H), 7.34 (t,J=7.2 Hz, 2H), 5.70 (m, 1H), 5.07 (m, 2H), 4.25
(m, 3H), 2.65 (dd, J=13.6 Hz, J=7.2 Hz, 1H), 2.41 (dd,
J=13.6 Hz, J=7.6 Hz, 1H), 1.30 (s, 3H); *C-NMR (100
MHz, DMSO-dy) 8 174.7,154.5, 143.6, 140.5, 133.0, 127 4,
126.9, 125.1, 119.9, 118.4, 65.2, 57.8, 46.7, 22.4, 21.1,
HRMS caled for C, H, NO, (M+Na) 352.1549, found
352.1561.

(S)-N-(9-Fluorenylmethyl carbamate)-2-(2'-butenyl)ala-
nine (“Fmoc-8-1,”). 'H-NMR (400 MHz, DMSO-d,) 8 7.90
(d, J=7.2 Hz, 2H), 7.73 (d, J=7.6 Hz, 2H), 7.42 (t, ]=7.2 Hz,
2H), 7.33 (1, J=7.6 Hz, 2H), 5.79 (m, 1H), 5.01 (d, J=17.2
Hz, 1H), 4.95 (d, I=10.4 Hz, 1H), 4.25 (m, 3H), 1.93 (m,
3H), 1.75 (m, 1H), 1.35 (s, 3H); *C-NMR (100 MHz,
DMSO-dy) & 175.1, 154.6, 143.7, 140.6, 138.1, 127.5,
127.0,125.2,120.0, 118.4, 65.2,58.1, 46.7, 35.6, 27.7, 224,
HRMS caled for C,,H,;Na, (M+H) 366.1705, found
366.1709.

(S)-N-(9-Fluorenylmethyl carbamate)-2-(2'-pentenyl)ala-
nine (“Fmoc-S-1,”). 'H-NMR (400 MHz, DMSO-d,) &
7.894 (d, J=7.6 Hz, 2H), 7.723 (d, J=7.2 Hz, 2H), 7.418 (t,
J=8 Hz, 2H), 7.330 (td, J=7.2 Hz, J=1.2 Hz, 2H), 5.775 (m,
1H), 5.001 (dd, I=17.2 Hz, J=1.2 Hz, 1H), 4.955 (dd, J=10.4
Hz, J=1.2 Hz, 1H), 4.229 (m, 3H), 1.994 (t, J=6.4 Hz, 2H),
1.764 (m, 1H), 1.665 (m, 1H), 1.326 (br, 5H); *C-NMR
(100 MHz, DMSO-d,) 8 175.1, 154.5, 143.6, 140.5, 138.3,
1274, 126.9, 125.1, 119.9, 114.8, 65.2, 58.2, 46.7, 36.3,
33.3, 22.6, 22.4; HRMS caled for C,3;H,sNO, (M+Na)
402.1682, found 402.1678.

(S)-N-(9-Fluorenylmethyl carbamate)-2-(2'-hexenyl)ala-
nine (“Fmoc-S-1,”). 'H-NMR (400 MHz, DMSO-d,) § 7.87
(d, J=7.6 Hz, 2H), 7.70 (d, J=7.2 Hz, 2H), 7.40 (t, J=7.2 Hz,
2H), 7.31 (t, J=7.2 Hz, 2H), 5.75 (m, 1H), 4.97 (dd, J=17.2
Hz, J=2 Hz, 1H), 4.91 (dt, J=10 Hz, J=1.2 Hz, 1H), 4.22 (m,
3H), 1.98 (m, 2H), 1.75 (m, 1H), 1.66 (m, 1H), 1.31 (m, 4H),
1.20 (s, 3H); >C-NMR (100 MHz, DMSO-dy) & 175.5,
154.5, 143.6, 140.5, 138.4, 127.4, 126.9, 125.1, 119.9,
1147, 65.2, 58.2, 46.7, 36.5, 33.2, 28.5, 22.8, 22.4; HRMS
caled for C,,H,,NO, (M+Na) 416.1838, found 416.1848.

(S)-N-(9-Fluorenylmethyl carbamate)-2-(2'-octenyl)ala-
nine (“Fmoc-S-1,7). 'H-NMR (400 MHz, DMSO-d,) 8 7.89
(d, =8 Hz, 2H), 7.72 (d, J=7.2 Hz, 2H), 7.42 (t, J=7.2 Hz,
2H), 7.33 (td, J=7.2 Hz, ]=0.8 Hz, 2H), 5.78 (m, 1H), 4.98
(d, J=17 Hz, 1H), 4.93 (d, J=10 Hz, 1H), 4.23 (m, 3H), 1.99
(dt, J=7.2 Hz, J=6.8 Hz, 2H), 1.76 (m, 1H), 1.68 (m, 1H),
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1.33 (br, 4H), 1.23 (br, 7H); '*C-NMR (100 MHz, DMSO-
dg) 8 175.0, 154.5,143.6, 140.5, 138.5, 127.4, 126.8, 1251,
119.9, 114.4, 65.2, 58.2, 46.7, 36.6, 33.2, 29.0, 28.4, 28.2,
23.1, 22.4; HRMS calcd for C,;H, NO, (M+Na) 4442151,
found 444.2151.

(R)-N-(9-Fluorenylmethyl  carbamate)-2-(2'-propenyl)
alanine (“Fmoc-R-1,”). 'H-NMR (400 MHz, DMSO-d) §
7.90 (d, J=7.6 Hz, 2H), 7.73 (d, J=7.2 Hz, 2H), 7.42 (t, I=7.2
Hz, 2H), 7.34 (t, J=6.4 Hz, 2H), 5.69 (m, 1H), 5.06 (m, 2H),
4.25 (m, 3H), 2.65 (dd, J=13.6 Hz,J=6.8 Hz, 1H), 2.42 (dd,
J=13.2 Hz, J=7.6 Hz, 1H) 1.30 (s, 3H); '*C-NMR (100
MHz, DMSO-dg) § 174.7, 154.5, 143.6, 140.5, 133.0, 127 4,
126.9, 1251, 1199, 1184, 65.2, 57.8, 46.7, 22.4, 21.1;
HRMS caled for C, H,;NO, (M+Na) 374.1369, found
374.1373.

(R)-N-(9-Fluorenylmethyl carbamate)-2-(2'-pentenyl)ala-
nine (“Fmoc-R-1,"). "H-NMR (400 MHz, DMSO-d,) 8 7.90
(d, J=7.6 Hz, 2H), 7.73 (d, J=7.6 Hz, 2H), 7.42 (t, ]=7.6 Hz,
2H), 7.33 (t, J=7.6 Hz, 2H), 5.78 (m, 1H), 5.00 (d, J=17.6
Hz, 1H), 4.96 (d, J=10.4 Hz, 1H), 4.24 (m, 3H), 1.99 (m,
2H), 1.78 (m, 1H), 1.68 (m, 1H), 1.33 (br, SH); '*C-NMR
(100 MHz, DMSO-dy) 8 175.1, 154.5, 143.6, 140.5, 138.3,
127.4, 126.9, 125.1, 119.9, 114.8, 65.2, 58.2, 46.7, 36.2,
333, 22.6, 22.4; HRMS caled for C,;H,sNO, (M+H)
380.1862, found 380.1881.

(R)-N-(9-Fluorenylmethyl carbamate)-2-(2'-hexenyl)ala-
nine (“Fmoc-R-1,”). "H-NMR (400 MHz, DMSO-d,) § 7.90
(d, J=7.2 Hz, 2H), 7.73 (d, J=7.2 Hz, 2H), 7.42 (t, ]=7.6 Hz,
2H), 7.33 (t, J=7.2 Hz, 2H), 5.76 (m, 1H), 5.00 (dd, J=17.2
Hz, J=2 Hz, 1H), 4.94 (dt, J=10.4 Hz, ]=0.8 Hz, 1H), 4.24
(m, 3H), 2.02 (br, 2H), 1.77 (m, 1H), 1.68 (m, 1H), 1.32 (br,
4H), 1.23 (br, 3H); *C-NMR (100 MHz, DMSO-d,) §
175.1, 154.5, 143.6, 140.5, 138.4, 127.4, 1269, 1251,
119.9, 114.6, 65.2, 58.2, 46.7, 36.5, 33.2, 28.5, 22.7, 22.4;
HRMS caled for C,,H,,NO, (M+Na) 416.1838, found
416.1823.

Peptide Synthesis: The peptides were synthesized manu-
ally, using solid phase peptide and Fmoc chemistry on Rink
Amide AM resin with a loading of 0.65 mmol/g resin.
a,o-Di-substituted amino acids were coupled using O-(7-
azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluo-
rophosphate (HATU) as the activating agent, three equiva-
lents of the amino acid, and coupling times were typically
two hours. The following amino acid coupled to the free
amine of the a,a-di-substituted amino acids was double
coupled using HATU. The peptides were cleaved using
standard protocols, purified using C18 reverse phase chro-
matography and their identities were confirmed using elec-
trospray mass spectroscopy. The wild type peptide has the
sequence: Ac-EWAETAAAKFLAAHA-NH, (SEQ ID NO:
1). The peptides synthesized in the R, ,,,S(x) series have the
general sequence: Ac-EWAEyAAAKFLzAHA-NH, (SEQ
ID NO: 2) where (y,z) were substituted with the unnatural
amino acid pairs (R-15,S-15), (R-15,8-1,), (R-1,,S-1,),
(R-15,8-1), and (R-1,,S-14) for the peptides R,,,,S(8),
R;::7809). R;11,5(10), R, ,,,S(11), and R, ,,,5(12) respec-
tively. The peptides synthesized in the S, ,, ,S(x), R, ,,.R(X),
and R,,.,S(X) series have the general sequence:
Ac-EWAETAAyKFLzZAHA-NH, (SEQ ID NO: 3) where
(v,z) were substituted with the unnatural amino acid pairs
(S-1,,S-13), (S-1,,S-1,), (S-15,5-1;), (R-1,,R-15), (R-1,,R-
1., (R-15,R-15), (R-1,,8-1,), (R-1,,S-1;), and (R-1,,S-1,)
for the peptides S;,,45(6), S;,.45(7), 8,,.45(8), R,,,45(6),
Ry saS(7). Ry :1aS(8)R;1,45(5), R;;,45(6), and R, ,S(7)
respectively. Ac and NH, represent N-terminal acetylation
and a C-terminal primary amide respectively.
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Peptide metathesis and purification: 200 ul. of 10 mM
Bis(tricyclohexylphosphine)benzylidine ruthenium (IV)
dichloride (Grubbs catalyst) in 1,2-dichloroethane was
degassed and added to 20 mg of N-terminal capped peptide
still bound to the solid support in a disposable fritted
reaction vessel. The reaction was allowed to proceed at room
temperature for two hours and then the catalyst was filtered
off. The catalyst addition and 2 hour metathesis reaction was
repeated once to drive the slow metathesis reactions to
completion. The resin bound peptide was then washed, dried
and cleaved according to standard Fmoc peptide cleavage
protocols (95% TFA, 2.5% H,0, 2.5% triisopropylsilane)*”.
The cleaved peptides are purified using C, ¢ reverse phase
HPLC. All of the metathesized peptides elute before the
unmetathesized starting material.

Olefin hydrogenation on solid support: Hydrogenation of
olefin containing peptides on solid support was performed
by adding 200 uL of a solution of 0.7 M 2,4,6 tri-isopropyl
benzenesulfonyl hydrazide and 1.4 M piperidine in
1-methyl-2-pyrrolidinone to 20 mg of olefin containing
peptide on solid support in a disposable fritted reaction
vessel. The vessel was sealed and placed in a 47° C. water
bath for two hours. After two hours the solution was filtered
off and the hydrazine addition and reaction at 47° C. is
repeated four more times. The progress of the reaction can
be monitored by injecting the cleavage product of a few
beads into an electrospray reverse phase LC mass spectrom-
eter or by reverse phase HPLC monitored at 280 nm. The
retention time of the hydrogenated peptides falls between
the metathesized, unhydrogenated peptides and the unme-
tathesized peptides.

Circular dichroism: Circular dichroism spectra were col-
lected on a Jasco J-710 spectropolarimeter at 4° C. A typical
sample was prepared by lyophilizing a measured volume of
peptide solution and then resuspending it in 3 ml of 0.1%
TFA in water to obtain a solution with a 280 nm absorbance
of approximately 0.06 absorbance units. The sample was
placed in a 1 cm CD cuvette and the ultraviolet absorbance
was measured. The circular dichroism spectrum was mea-
sured and a baseline CD spectrum of 0.1% TFA in water was
subtracted from it. The baseline subtracted CD spectrum was
then normalized using the 280 nm absorbance.

Analytical centrifugation: Sedimentation Equilibrium
Experiments were performed on a Beckman Optima XL.-A
analytical centrifuge. The samples were centrifuged at
35,000 RPM at 4° C. and monitored at 280 nm. The data was
fit to a single species model. The sedimentation equilibrium
experiments were run on the identical samples from which
circular dichroism spectra were recorded. All of the peptides
fit to an ideal monomer indicating that the helix induction
seen is not due to aggregation.

Peptide trypsin digest: A typical peptide trypsin digest
experiment was performed by adding 5 pl. of a 20x trypsin
solution in 1 mM HCI to a 100 uL solution of peptide at 9
uM in 10% EtOH in 50 mM Tris at pH 8.3. The reaction was
allowed to proceed at room temperature for 30 min at which
time it was quenched by adding 100 pL of a 1% trifluoro-
acetic acid solution and frozen on dry ice. The sample was
then thawed and injected into a reverse phase HPLC on a
C18 column for quantitation at 280 nm. The cleavage rate
constants were obtained by performing the digest experi-
ments at multiple trypsin concentrations and fitting to a
kinetic model that is first order in both enzyme and substrate
concentration.
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Table 1
Percent conversions for a two hour metathesis reaction
performed on solid support with 10 mM Grubbs catalyst in

1,2-dichloroethane. Percent conversion product/(product+
starting material) as determined by reverse phase HPLC.

TABLE 1
%
% % Conver-
Crosslink Conversion Crosslink Conversion Crosslink sion
R;;,7S(8) 0 S,;48(6) 0 RyuaS(6) 0
R, ;17S(9) S S,uS0) 68 RS 17
R;;,75(10) 77 SiaS®) 98 R,S(®8) 98
R SAL) 98
R S12) 98
TABLE 2
Cleavage rate constant (M~ s™!)
Metathesized and
Crosslink Unmetathesized hydrogenated
Control 2.39
Ry178(9) 0.37
R;:478(10) 0.34
R ;0S(11) 0.50 0.058
R,75(12) 0.12
EQUIVALENTS
Those skilled in the art will recognize, or be able to

ascertain using no more than routine experimentation,
numerous equivalents to the inventive stabilized compounds
and methods of use thereof described herein. Such equiva-
lents are considered to be within the scope of this invention
and are covered by the following claims.

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 12
<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 1

LENGTH: 15

TYPE: PRT

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Synthetic peptide

<400> SEQUENCE: 1

Glu Trp Ala Glu Thr Ala Ala Ala Lys Phe Leu Ala Ala His Ala

1 5 10

15
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-continued

20

<210> SEQ ID NO 2

<211> LENGTH: 15

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic peptide
<220> FEATURE:

<221> NAME/KEY: MISC_FEATURE

<222> LOCATION: (5)..(5)

<223> OTHER INFORMATION: Unnatural amino acid
<220> FEATURE:

<221> NAME/KEY: MISC_FEATURE

<222> LOCATION: (12)..(12)

<223> OTHER INFORMATION: Unnatural amino acid

<400> SEQUENCE: 2

Glu Trp Ala Glu Xaa Ala Ala Ala Lys Phe Leu Xaa Ala His Ala
1 5 10 15

<210> SEQ ID NO 3

<211> LENGTH: 15

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic peptide
<220> FEATURE:

<221> NAME/KEY: MISC_FEATURE

<222> LOCATION: (8)..(8)

<223> OTHER INFORMATION: Unnatural amino acid
<220> FEATURE:

<221> NAME/KEY: MISC_FEATURE

<222> LOCATION: (12)..(12)

<223> OTHER INFORMATION: Unnatural amino acid

<400> SEQUENCE: 3

Glu Trp Ala Glu Thr Ala Ala Xaa Lys Phe Leu Xaa Ala His Ala
1 5 10 15

<210> SEQ ID NO 4

<211> LENGTH: 15

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic peptide
<220> FEATURE:

<221> NAME/KEY: MISC_FEATURE

<222> LOCATION: (1)..(1)

<223> OTHER INFORMATION: Unnatural amino acid
<220> FEATURE:

<221> NAME/KEY: MISC_FEATURE

<222> LOCATION: (8)..(8)

<223> OTHER INFORMATION: Unnatural amino acid
<220> FEATURE:

<221> NAME/KEY: MISC_FEATURE

<222> LOCATION: (15)..(15)

<223> OTHER INFORMATION: Unnatural amino acid

<400> SEQUENCE: 4

Xaa Trp Ala Glu Thr Ala Ala Xaa Lys Phe Leu Ala Ala His Xaa
1 5 10 15

<210> SEQ ID NO 5

<211> LENGTH: 16

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic peptide

<400> SEQUENCE: 5

Gly Gln Val Gly Arg Gln Leu Ala Ile Ile Gly Asp Asp Ile Asn Arg
1 5 10 15
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-continued

22

<210> SEQ ID NO 6

<211> LENGTH: 16

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic peptide
<220> FEATURE:

<221> NAME/KEY: MISC_FEATURE

<222> LOCATION: (5)..(5)

<223> OTHER INFORMATION: Unnatural amino acid
<220> FEATURE:

<221> NAME/KEY: MISC_FEATURE

<222> LOCATION: (9)..(9)

<223> OTHER INFORMATION: Unnatural amino acid

<400> SEQUENCE: 6

Gly Gln Val Gly Xaa Gln Leu Ala Xaa Ile Gly Asp Asp Ile Asn Arg
1 5 10 15

<210> SEQ ID NO 7

<211> LENGTH: 16

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic peptide
<220> FEATURE:

<221> NAME/KEY: MISC_FEATURE

<222> LOCATION: (9)..(9)

<223> OTHER INFORMATION: Unnatural amino acid
<220> FEATURE:

<221> NAME/KEY: MISC_FEATURE

<222> LOCATION: (13)..(13)

<223> OTHER INFORMATION: Unnatural amino acid

<400> SEQUENCE: 7

Gly Gln Val Gly Arg Gln Leu Ala Xaa Ile Gly Asp Xaa Ile Asn Arg
1 5 10 15

<210> SEQ ID NO 8

<211> LENGTH: 16

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic peptide
<220> FEATURE:

<221> NAME/KEY: MISC_FEATURE

<222> LOCATION: (6)..(6)

<223> OTHER INFORMATION: Unnatural amino acid
<220> FEATURE:

<221> NAME/KEY: MISC_FEATURE

<222> LOCATION: (13)..(13)

<223> OTHER INFORMATION: Unnatural amino acid

<400> SEQUENCE: 8

Gly Gln Val Gly Arg Xaa Leu Ala Ile Ile Gly Asp Xaa Ile Asn Arg
1 5 10 15

<210> SEQ ID NO 9

<211> LENGTH: 16

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic peptide
<220> FEATURE:

<221> NAME/KEY: MISC_FEATURE

<222> LOCATION: (5)..(5)

<223> OTHER INFORMATION: Unnatural amino acid
<220> FEATURE:

<221> NAME/KEY: MISC_FEATURE

<222> LOCATION: (12)..(12)

<223> OTHER INFORMATION: Unnatural amino acid
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24

-continued

<400> SEQUENCE: 9

Gly Gln Val Gly Xaa Gln Leu Ala Ile Ile Gly Xaa Asp Ile Asn Arg

1 5 10

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 10

LENGTH: 16

TYPE: PRT

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Synthetic peptide

<400> SEQUENCE: 10

15

Leu Ser Gln Glu Thr Phe Ser Asp Leu Trp Lys Leu Leu Pro Glu Asn

1 5 10

<210> SEQ ID NO 11

<211> LENGTH: 16

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic peptide
<220> FEATURE:

<221> NAME/KEY: MISC_FEATURE

<222> LOCATION: (5)..(5)

<223> OTHER INFORMATION: Unnatural amino acid
<220> FEATURE:

<221> NAME/KEY: MISC_FEATURE

<222> LOCATION: (12)..(12)

<223> OTHER INFORMATION: Unnatural amino acid
<400> SEQUENCE: 11

15

Leu Ser Gln Glu Xaa Phe Ser Asp Leu Trp Lys Xaa Leu Pro Glu Asn

1 5 10

<210> SEQ ID NO 12

<211> LENGTH: 16

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic peptide
<220> FEATURE:

<221> NAME/KEY: MISC_FEATURE

<222> LOCATION: (4)..(4)

<223> OTHER INFORMATION: Unnatural amino acid
<220> FEATURE:

<221> NAME/KEY: MISC_FEATURE

<222> LOCATION: (11)..(11)

<223> OTHER INFORMATION: Unnatural amino acid

<400> SEQUENCE: 12

15

Leu Ser Gln Xaa Thr Phe Ser Asp Leu Trp Xaa Leu Leu Pro Glu Asn

1 5 10

15

We claim:

1. A method for disrupting the binding of a first protein to
a second protein, the method comprising contacting a pep-
tide with the second protein, wherein the first protein is a
native protein; the second protein is another native protein;
the second protein comprises a helix acceptor; the first
protein binds the helix acceptor of the second protein; the
peptide binds the helix acceptor of the second protein; the
peptide comprises a stabilized alpha helix; and the peptide
comprises at least two amino acids connected by a hydro-
carbon covalent cross-link.

2. The method of claim 1, wherein the hydrocarbon
covalent cross-link stabilizes the alpha-helix of the peptide.

3. The method of claim 1, wherein the peptide comprises
a binding site of a donor helix of the first protein.

55

60

65

4. The method of claim 1, wherein the cross-link com-
prises a carbon-carbon double bond.

5. The method of claim 1, wherein the at least two amino
acids connected by the hydrocarbon covalent cross-link are
positioned at i,i+4 or at 1,i+7.

6. The method of claim 1, wherein the at least two amino
acids that are connected by the hydrocarbon covalent cross-
link are alpha,alpha-methyl, vinyl; alpha, alpha-methyl,
alkylolefin; or divinyl amino acids.

7. The method of claim 6, wherein the at least two amino
acids that are connected by the hydrocarbon covalent cross-
link are positioned at 1,i+4 or at 1,i+7.

8. The method of claim 1, wherein at least one amino acid
that is connected by the hydrocarbon covalent cross-link
comprises an alpha-methyl, alpha-alkenyl amino acid.
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9. The method of claim 1, wherein the hydrocarbon
covalent cross-link spans from one to two turns on the
alpha-helix.

10. A method for synthesizing a peptide comprising a
cross-link, the method comprising:

(a) synthesizing an amino acid sequence, wherein the
amino acid sequence comprises a first amino acid
comprising a first moiety and a second amino acid
comprising a second moiety, and wherein the first and
second moieties are reactive toward one another in the
presence of a catalyst; and

(b) reacting the amino acid sequence under conditions
sufficient to promote a reaction between the first and
second moieties toward each other in the presence of
the catalyst, thereby resulting in formation of the cross-
link in the peptide; wherein the peptide comprises a
stabilized alpha helix and can disrupt binding of a first
protein to a second protein; wherein the first protein is
a native protein; the second protein is another native
protein; the second protein comprises a helix acceptor;
and the first protein binds the helix acceptor of the
second protein.
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11. The method of claim 10, wherein the cross-link spans
from one to two turns on the alpha-helix.

12. The method of claim 10, wherein the cross-link
comprises a carbon-carbon double bond.

13. The method of claim 10, wherein the peptide is
stabilized in comparison to a corresponding uncross-linked
peptide.

14. The method of claim 10, wherein the second protein
is a natural protein.

15. The method of claim 10, wherein the peptide com-
prises a binding site of a donor helix of the first protein.

16. The method of claim 10, wherein at least one amino
acid in the amino acid sequence is an alpha-allyl amino acid.

17. The method of claim 10, wherein the cross-link
stabilizes an alpha-helix of the peptide.

18. The method of claim 1, wherein the peptide is
stabilized in comparison to a corresponding uncross-linked
peptide.



